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Abstract: An algorithm for finding a complete set of nonequivalent labelings of a symmetric object and applications of the al
gorithm to problems in chemistry are presented. 

Combinatorial problems which deal with finding a com
plete set of nonisomorphic objects under various constraints 
and based upon various concepts of isomorphism occur in 
many phases of chemistry. Solutions to some have been 
achieved using sophisticated applications of graph theory 
and group theory.3'4 Perhaps the most common such prob
lem involves attaching, in all unique ways, a fixed set of Hg-
ands to a given molecular skeleton.5-6 This can be viewed as 
a labeling problem, in which all distinct assignments of a 
given set of labels to the parts of a symmetric object are 
sought. In developing the concepts set forth by Lederberg,7 

we have found that the labeling problem is common to 
many aspects of the generation of acyclic and cyclic isomers 
(see accompanying paper).2 Herein, our solution to the la
beling problem is presented. 

Part A of this paper may be read as a brief tutorial on the 
nature of the problem and an introduction to the terminolo
gy found in more technical treatments. Part B is a textual 
description of a method for the solution of this type of prob
lem. Part C is a summary of the procedure in a more algo
rithmic form; an even more formal description and a proof 
of correctness is available elsewhere.8 In part D, certain 
generalizations of the basic algorithm are presented. Final
ly, in part E, a sample application of the method to a com
plex isomerism problem in organic chemistry is outlined. 

The algorithm described here represents a concrete pro
cedure for the solution of problems which previously were 
solvable only via "intuition." An intuitive approach to la
beling problems is satisfactory for small cases, but can easi
ly break down when applied to more complex problems, 
e.g., the adamantane example in part D. It has been known 
how to compute the number of solutions,411-9 but an efficient 
method of actually constructing the solutions has not pre

viously been published;10 certainly the latter information is 
of substantially greater use to a chemist, as he is interested 
in the identity of each structure. 

A computerized version of the labeling algorithm has 
been coded in the INTERLISP language. It is imbedded 
within the structure generator described in the accompa
nying paper,2 and a listing of the source text of the program 
will be provided by the authors upon request. The program 
itself is available for use as described in the Experimental 
Section of ref 2. 

The labeling program has been tested extensively using 
cases for which numbers of solutions have been pub
lished.4b-9c In each case, the program was used to construct 
the complete set of labelings, the solutions were counted, 
and the count was compared with the published value. No 
discrepancies have been found except in the largest case 
checked by the program of the node labeling of naphthalene 
(six labels of one type, two of a second, and two of a third). 
In this case, Balaban and Harary4 b obtained a count of 329 
solutions, while we obtained 330; further investigation 
showed that the expansion of the "generating function'"415 

for naphthalene was incorrect in this and at least one higher 
term, and that 330 was in fact the correct figure. 

Part A. Definitions 

The object to be labeled may correspond to any finite col
lection of discrete parts (e.g., faces of a cube or atoms of a 
molecule), as long as the symmetries of the object can be 
described as rearrangements of the parts which leave the 
object unchanged. The labels may be any properties or en
tities which can be associated with the parts (e.g., colors, 
ligands, isotopic "tags"), as long as the labels themselves 
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are not altered by the symmetry operations on the object. 
Although the method described here is general, parts A-C 
of this paper will be concerned with a specific type of prob
lem: the labeling of the nodes of a graph, where each node 
receives just one label. In chemical terms, a graph is a mo
lecular skeleton ("cyclic skeleton"2) devoid of both atom 
names and three-dimensional information. The atom posi
tions in a graph are called nodes, and the bonds are called 
edges (multiple edges are allowed). Discussion of the gen
eralizations of the method is postponed until part D. 

Numbering and its Relationship to Symmetry. In the dis
cussion of symmetry, it is necessary for one to define some 
frame of reference within which to work. In this paper, a 
numbering of the graph {i.e., an association of integers 1 
through n to the n nodes of the graph) is used for this pur
pose, and the relationship between different numberings is 
used to characterize symmetry. 

For a fixed orientation of an n- node graph, there are n! 
ways of numbering. If the graph has no symmetry, then 
each of these ways is distinct from the rest. However, if 
there is some symmetry, as for example, in the decalin skel
eton (1), then relative to any particular numbering {e.g., 

CO 
1 

2a), some of the ways are different {e.g., 2b), while others 
are symmetrically equivalent {e.g., 2c). Intuitively, 2a and 

1 / V ^ V 5 2^7>8^S 5^4>3^S 
I I 1 I I I I I I I 
1C^^X.7/

6 Nr-'No^ S-^V1 0 

2a 2b 2c 
2c are equivalent, because one can rotate 2a about the 3-8 
axis to obtain 2c. There is an explicit way of determining 
the topological "sameness" of such numberings which is 
easily applied to even complicated cases, and which is well 
suited to computer applications. 

Two numberings of a graph are equivalent if the connection 
table derived from one can be made identical with that derived 
from the other by rearrangements of the rows and of the connec
tion lists within each row. 

Table I contains the connection tables of structures 2a-c, 
written in a standard, ordered form (with node numbers as
cending and each connection list ascending). Because the 
ordered connection table for 2a is identical with that of 2c, 
while that of 2b is different, 2a and 2c are equivalent, while 
2b is distinct. 

The above definition of equivalence deals only with to
pological properties. If two numberings of a graph are 
equivalent, then node / has the same valence in each, the 

Table I. Connection Tables for Structures 2a-c 

Node 

1 
2 
3 
4-
5 
6 
7 
8 
9 

10 

—2a . 
Connection 

List 

2.10 
1.3 
2,4.8 
3.5 
4.6 
5.7 
6.8 
3,7,9 
8,10 
1,9 

' 

Node 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

—2b 
Connection 

List 

8.9 
3.7 
2,6 
6,8,10 
9,10 
3,4 
2,8 
1,4,7 
1,5 
4.5 

Node 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

- 2 c . 
Connection 

List 

2,10 
1.3 
2,4,8 
3,5 
4.6 
5.7 
6,8 
3,7,9 
8,10 
1.9 

nodes / and j are connected similarly in each, for all / and 
j . One result is that, for labeling problems in chemistry, the 
valences of an atom are completely interchangeable {i.e., 
these valences have no spatial orientation). When stereo
chemical considerations are important, topological equiva
lence may not be sufficiently strong. In such cases other 
types of equivalence, phrased in terms of superimposability 
of two numbered skeletons, can be used. The test for topolo
gical equivalence is particularly simple, though, and is satis
factory for many chemical situations. 

Permutations and Permutation Groups. Given a number
ing of a graph as a reference, one can use a condensed nota
tion to write down other numberings. All that is needed is a 
list of integers which are reassigned, respectively, to nodes 1 
through n of the reference. Using 2a as a reference, con
densed notations for 2a-c are given in Table II. In the 2b 

Table II. Condensed Notations for Numberings 2a-c 

(Reference) 2a: 1 2 3 4 5 6 7 8 9 10 
b: 2 7 8 1 9 5 10 4 6 3 
c: 5 4 3 2 1 10 9 8 7 6 

case, the row of numbers means that the node numbered 1 
in 2a is now numbered 2, the node numbered 2 in 2a is now 
numbered 7, and so on. 

With this notation, one can view a numbering as a trans
formation which carries the integers (1, 2, . . . , n) into 
themselves in a one-to-one fashion. Such transformations 
are called permutations. The permutation ir for 2c, for ex
ample, is 7T2c(l) = 5, T2c(2) = 4, T2C(3) = 3, . . . , 7T2c(10) = 
6, while that for the reference is the identity 7^aO') = ;', / = 
1,2,. . . , « . 

The symmetry of any graph is fully described by the set 
of numberings which are equivalent to the reference. The 
permutations corresponding to these satisfy the properties 
of a mathematical group, called the symmetry group of the 
graph. More explicitly: 

The symmetry group of a graph is the set of all permutations 
whose corresponding numberings yield ordered connection ta
bles identical with that of the reference numbering. 

If, in the definition of equivalence, properties other than 
the connection table are used, other types of symmetry 
groups may be defined in an analogous manner. For the de
calin skeleton, there are four permutations in the symmetry 
group. These topological symmetries, given in Table III, 

Table III. The Symmetry Group of the Decalin Skeleton" 

TTi 1 2 3 4 5 6 7 8 9 1 0 
TTv 5 4 3 2 1 10 9 8 7 6 
Th 10 9 8 7 6 5 4 3 2 1 
T T 1 8 O 6 7 8 9 10 1 2 3 4 5 

° The reference numbering here corresponds to 2a. 

correspond directly to the geometric symmetries ir\ = iden
tity, 7TV = rotation about the vertical (3-8) axis, ^h = rota
tion about the horizontal axis, and 7Ti80 = in-plane rotation 
(all are 180° rotations). 

Representation of Labelings. Once a reference numbering 
has been chosen, one can define a compact notation for la
belings as well as numberings. All that is needed is a list of 
symbols which represent the labels associated, respectively, 
with nodes 1, 2, . . . , n in the reference. Thus, with 2a as 
the reference, labelings 3a-c of the nodes of the decalin 
skeleton have the following representations. 

In these cases, the symbols used for representation are 
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N ^ N r 0 N ? N ^ N K ^ N N - ^ C ^ C 
I I1 I I 1 I I I I 

<V<VN N - V <V*VN 

3a 3b 3c 
3a: N B C C C N C C C C 
k N C C C N C C B C C 
c: N C C C C N B C C C 

identical with the labels themselves, but in general any kind 
of symbol may be used as long as the correspondence be
tween symbols and labels is understood. 

Equivalence Classes and Canonical Labelings. Permuta
tions, discussed earlier in terms of numberings, can be 
thought of as operators which act upon labelings. The ac
tion of the permutation 

V 2 • • • In 

on the representation of a labeling is interpreted as follows. 
Replace the symbol in position 1 with that in I], replace the 
symbol in position 2 with that in /2, and so on. Thus, the 
permutation 

TT = 1 8 3 4 6 5 7 2 10 9 

acting upon 3a gives 3b. 
Two labelings of the nodes of a graph are equivalent if 

and only if at least one permutation in the group of the 
graph, when acting upon one labeling, yields the other. 
Thus 3a and 3c are equivalent, because TTISO in Table III, 
when applied to 3a, yields 3c. 

Given a labeling, it is possible to generate all other label
ings which are equivalent by applying to it each permuta
tion in the symmetry group. The labelings obtained in this 
way, taken as a set (i.e., with identical representations 
eliminated), form an equivalence class of labelings. Table 
IV shows the equivalence class to which 3a (and 3c) 
belongs. 

Table IV. The Equivalence Class" of Labelings to Which 3a Belongs 

Permutation'' Results when applied to 3a 

Ti N B C C C N C C C C 
Ty C C C B N C C C C N 
T1, C C C C N C C C B N 
T1,,, N C C C C N B C C C 

" The reference numbering corresponds to 2a. * Taken from 
Table III. 

The problem treated in this paper is one of finding a com
plete list of nonequivalent labelings, which amounts to se
lecting exactly one representative from each equivalence 
class of labelings. This goal is realized most efficiently if 
one can define some property of the labelings which auto
matically distinguishes one member of each class as some
how unique. One method is to sort the labelings on the basis 
of their representations, thus establishing an ordering of 
them. One can then define the unique labeling in an equiva
lence class to be the "smallest" member, that is, the one 
which occurs first in the sorted list. Such a labeling will be 
called a canonical one. 

To sort a list of representations, one needs (in addition to 
a reference numbering) an ordering of the label symbols. 
This ordering is arbitrary but must be used consistently for 
any particular equivalence class. For example, in labeling 
the decalin skeleton with two N's, one B, and seven C s , one 
might choose the alphabetic convention B < C < N. Once 
the label symbols have been ordered, the representations of 
any two labelings can be compared, symbol-by-symbol, with 
the first inequality establishing the overall ordering of the 

labelings. (This is just a "dictionary" ordering of represen
tations.) Thus, 3a is "smaller" than 3c because, although 
the first symbols in their representations are equal, the sec
ond symbol (B) of 3a is "smaller" than the second symbol 
(C) of 3c. With the alphabetic convention, 7rv(3a) in Table 
IV is the smallest member of its equivalence class and is 
thus a canonical labeling. 

The concept of canonicity is used in the kernel technique 
(below) to establish specific "target" labelings in each 
equivalence class. Thus, the problem of generating all 
members of a class and comparing them to eliminate sym
metry duplicates is avoided. 

Part B. Solution to the Labeling Problem 

An obvious method of finding the distinct labelings 
would be to generate all possible labelings and, for each, to 
check if an equivalent one was previously constructed. Un
fortunately, this method can take an exorbitant amount of 
computation. Below, a method is discussed which we believe 
uses an amount of time roughly proportional to the number 
of solutions (i.e., the number of equivalence classes of label
ings) and requires only knowledge of the symmetry group, 
in terms of permutations. Thus, the procedure is useful for 
labeling objects using their geometric symmetry1 ' as well as 
the topological symmetry defined above. We first discuss 
several special cases, then outline the solution to the general 
problem. 

1. Special Cases. There are three special cases of label
ing in which the problem can be solved immediately. Al
though they may be amenable to treatment with the more 
general algorithm, their solution is computationally simpler. 
These special cases are frequently encountered in the reduc
tions (see below) of the general problem. 

1.1. One Type of Label. If the number of labels of a 
given type is equal to the number of nodes to be labeled, 
then there is only one way to carry out the labeling. A check 
for this trivial case is necessary, because subproblems of 
this form are often encountered during orbit recursion (see 
below). 

1.2. Two Types of Labels and One Label of a Given Type. 
In cases where there is one label of a given type and n — 1 
of another (where n is the number of nodes to be labeled), it 
is only necessary to identify the classes of symmetrically re
lated nodes, or orbits,'2 and, for each orbit, to associate 
the single label with one node therein. Thus, the number of 
distinct labelings is equal to the number of orbits. Within 
each orbit, the single label is by convention associated with 
the node which bears the smallest reference number. 

For the decalin skeleton, there are three orbits, marked 
with *, +, and # in 4. If the graph is to be labeled with one 

4 

N and nine "blanks," each distinct labeling corresponds to 
the association of an N with the "first" node of each orbit. 
Thus, there are three distinct labelings Sa-c (2a is used as 
the reference numbering). 

CO OO CO 
5a 5b 5c 

1.3. Two Types of Labels and an Unsymmetric Graph. 
When there is no symmetry (i.e., the group consists of only 
the identity permutation), and there are two label types (n 1 
of the first type and n — n \ of the second), the labeling re-
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duces to a simple combinatorial problem: given n distinct 
objects, find all distinct ways of selecting n \ of them. This 
can be accomplished by the following recursive13 algorithm. 
To find all selections of k objects out of a set 5 whose size 
is n 

(1) If A: = 1, pick each element of the set S, in turn, to 
obtain n solutions. 

(2) Mk = n, the set S comprises the only solution. 
(3) Otherwise, pick an element x from S: 

(a) Find all selections of k objects out of the set S 
— (x). (b) Find all selections of k — 1 objects 
out of the set S — (x), and to each of these add 
the element x. (c) The solution is the union of 
the results from steps 3a and 3b. 

A subset of S with k elements either contains the ele
ment x or not. In case 3a, one finds those selections which 
do not contain x, while in 3b, one finds those that do. Each 
of these cases is simpler than the original selection problem, 
because the size of the set, as well as the value of k in 3b, is 
reduced. The terminating conditions (k = 1 or k equal to 
the size of the set) ensure that the process will halt. 

2. General Case. In the general labeling case, there are 
two important techniques used to reduce the problem. The 
first is called label recursion ' 3 and the second orbit recur
sion. The idea behind label recursion is that one can deal 
with just two types of labels at a time. The idea behind orbit 
recursion is that one can label just one orbit at a time. 
These reductions are discussed in detail below. 

2.1. Label Recursion. If one is given many (more than 
two) kinds of labels, say n \ of type 1, n 2 of type 2, . . . , «* 
of type k, one may proceed as follows. Solve the labeling 
problem for n, labels of type 1 and n2 + "3 + . . . + «* la
bels of another type, called "blank." Take each of the re
sults and label the "blank" nodes with n2 labels of type 2 
and « 3 + . . . + rik "blanks," and so forth. It has been 
proved8 that the result of this series of steps, each of which 
is carried out with only two types of labels, is a list of all 
distinct solutions to the original problem. 

Each labeling step may reduce the symmetry of the 
object being labeled. Therefore, after each such step it is 
necessary to calculate the new group, termed the reduced 
symmetry group,'4 of the graph before proceeding to the 
next step. 

It is computationally most efficient to order the k types 
of labels so that n\ < n2 < . . . < «*. Special cases are 
more likely to be encountered immediately, and, in general, 
it is easiest to label a graph when the number of labels of 
one type is small. Also, each labeling tends to reduce the 
symmetry of the graph, making subsequent labelings sim
pler. 

To treat an example, consider the labeling of the decalin 
skeleton with one N, one B, and eight C s . One first labels 
with one N and nine "blanks," an instance of special case 
1.2. The result is the set of three labelings discussed above, 
5a-c. There are now three new problems: to label the 
"blanks" of 5a-c, under their respective reduced sym
metries, with one B and eight C s , and again special case 1.2 
is applicable. For 5a and 5b, placement of the N has de
stroyed all symmetry of the graph, and thus each "blank" 
has its own orbit. Therefore, there are nine distinct label
ings in each case. For 5c, there are five orbits in the reduced 
symmetry group, and five labeled structures result (6a-e). 

Note that the above labelings all reduce to one of the spe
cial cases. Had there been more than one N or B, the meth
ods described below would have been needed. 

2.2. Orbit Recursion. As a result of label recursion, each 
labeling step is carried out with at most two types of labels, 
say n \ of one type and n2 of another. Here, n, + n2 = n, 

C C B-- x N / X 0 

I > I 
C-N / C x X 

6a 

c-1 
^ N " ^ C 

I I t 

C X ^ 

C ^ N ^ X ; 

C x X x X 

6b 

C > \ N / C x r 

I1 I I 
C-N0ZCx ^ B 

6c 

C C 
C X N X ^ C 

I 
C . 

l i 

/ B x X 

6d 6e 

the number of nodes to be labeled. When no special cases 
apply, one has by definition a graph with some symmetry, 
and n \,n2 > 1. If, in addition, the nodes fall into more than 
one orbit, further simplification is possible. 

Suppose one of the orbits is chosen, customarily the one 
containing the node of lowest reference number. The prob
lem can then be treated in two stages. First, the nodes with
in the orbit are labeled with a subset of the given label set; 
then, for each partial labeling thus obtained, the remaining 
nodes (i.e., those not in the chosen orbit) are labeled with 
the remaining labels, using the reduced symmetry group. 
Several cases must usually be considered in this fashion, 
each corresponding to a distribution of the given labels over 
the two types of nodes. 

Consider, for example, the labeling of the decalin skele
ton with three N's and seven C s . The four-node orbit 
(1,5,6,10) is chosen, and the labels are partitioned into the 
four possible distributions shown in Table V. Each case may 

Table V. Partitions of Three N's and Seven Cs between the Orbit 
(1,5,6,10) and the Remaining Nodes in the Decalin Skeleton'' 

Labels going to orbit Labels going to 

Case no. 

1 
2 
3 
4 

U . J , ' 
No. of N's 

3 
2 
1 
0 

No. . of C s 

1 
2 
3 
4 

No. of N's No. of C s 

0 6 
1 5 
2 4 
3 3 

° The reference numbering here corresponds to 2a. 

be solved independently. Focusing upon case 3, the first 
stage involves the labeling of (1,5,6,10) with one N and 
three C s . This is an instance of special case 1.2, and be
cause there is only one orbit, one labeling (7) results. The 

XC 

C 

second stage involves the labeling of the remaining nodes 
(2,3,4,7,8,9) with the two N's and four C s . The initial la
beling has removed all symmetry from the graph, and thus 
this stage reduces to special case 1.3. There are 15 ways to 
pick two elements from (2,3,4,7,8,9): 

(2,3), (2.4), (2,7), (2,8), (2,9) 
(3,4), (3,7), (3,8), (3,9) 
(4,7), (4,8), (4,9) 
(7,8), (7,9) 
(8.9) 

Associating the two N's with the two chosen nodes in each 
case yields 15 distinct labelings, the first three of which are 
shown (8a-c). 

/ ^ N / C x 

N Z N N / X c 

I I I 
C x / C x ^C 

.N. N 
N z X 0 ^ X c 

I I I 
CN^ / C x X 

X 0 / x c z 

\ C 
N / x c / x c 

I I I 
C N - C X / C 

r x 8a 8b 8c 
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2.3. Kernel Technique. Label and orbit recursion usually 
reduce the general labeling problem to one of the special 
cases given above. However, situations occur {e.g., case 2 of 
Table V) in which an m-node orbit is to receive m \ > 1 la
bels of a first type and mi > \ labels of a second. No fur
ther reductions are possible, and a special method called the 
kernel technique has been developed to treat this funda
mental labeling problem. 

The goal of the kernel technique is the generation of all 
canonical labelings (see part A) of the orbit with the given 
label set. In the ordering of representations, it will be as
sumed here that a label of the first type is "smaller" than 
one of the second type. The procedure is a constructive one 
in which nodes with successively higher node numbers are 
given labels. At a typical intermediate stage, partial label
ings Lk of the first k nodes are used as starting points for 
the labeling of the (k + l)th node. For each Lk, one or two 
cases are considered. The (k + l)th node may receive a 
label of either type, but one or the other of these possibili
ties may be invalid (i.e., if m \ labels of the first type o r « 2 
labels of the second already appear in L^). The newly con
structed partial labelings Lk + \ are then tested as described 
below, and only those which do not violate the canonicity 
condition are retained for the generation of the L^+i's. It 
can be shown that any canonical labeling must associate a 
label of the first (smaller) type with the first node of the 
orbit, and thus only one L\ is needed to begin the proce
dure. The process terminates when k reaches m, and the 
complete labelings are tested for canonicity in the usual 
fashion (see part A). 

The purpose of testing the partial labelings is to elimi
nate, as early in the construction as possible, those which 
can never form the basis for a canonical labeling. An at
tempt is made, therefore, to show that for at least one per
mutation TT in the (possibly reduced) symmetry group of the 
graph, a given partial labeling Lj could never be "smaller" 
than the image Tr(Lj) of Lj under x. Preliminary to the pre
sentation of the actual test, it is necessary to discuss the rep
resentation of partial labelings. 

A partial labeling Lj can be represented as a list of m 
symbols which indicate the labels associated, respectively, 
with the first, second, . . . , mth node of the orbit. For clari
ty, label symbols are omitted for nodes which are not in the 
orbit. The symbol 0 stands for a label of the first type, 1 for 
a label of the second type, and the symbol "_" is used to in
dicate that a node has not yet been labeled. Thus, the first j 
symbols in the representation of Lj are of the 0-1 type, and 
these are followed by m-j symbols "_ ." The representation 
for TT(LJ) contains the same number of 0's, l's, and symbols 
"_" but (possibly) in a different order, determined by the 
action of x on the representation of L/ (see part A). 

The testing is done by filling in the symbols "_" of Lj 
with 0's, thus defining a full labeling, called min(£y), which 
is as small as or smaller than any other labeling created 
from Lj. Similarly, for each x, the symbols "_" of x(Ly) 
are filled in with l's, thus defining a labeling, called max-
(-Tr(Ly)), which is as large as or larger than any image of Lj 
under x. If there is a x such that min(Lj) is larger than 
max(x(Ly)), then Lj cannot possibly give rise to a canonical 
labeling and may thus be discarded. Figure 1 shows an ex
ample of a partial labeling which would be eliminated in 
this way, assuming C < N. Here 

L3 = 0 1 0 
min(L3j = 0 1 0 0 0 0 

and for the threefold rotation 

- = 3 1 2 6 4 5 
one obtains 

Figure 1. The skeleton corresponding to prismane: (a) reference num
bering; (b) a partial labeling from which no canonical full labeling can 
be derived. 

Figure 2. Summary of the steps in labeling the orbit (1,5,6,10) of the 
decalin skeleton with two Cs and two N's. The reference numbering 
corresponds to 2a and the label symbols are ordered C < N. 

-(L3) = 0 0 1 
max(x(L3)) = 0 0 1 1 1 1 

Because the first elements of min(L3) and max(x(L3)) are 
equal, the second elements must be compared, giving 

min(L3) > max(;r(L3)) 
This indicates that L 3 may be excluded in the construction 
of all further labelings. 

If a full labeling is tested in this fashion (i.e., if there are 
no symbols " _ " in the representation), this procedure re
duces to the standard canonicity test. 

In the decalin example, the orbit labelings are particular
ly simple in that a "noncanonical" partial labeling is never 
generated. Figure 2 summarizes the steps in labeling the 
orbit (1,5,6,10) with two N's and two C s (case 2 of Table 
V), a problem for which there are three solutions. To com
plete this case, one would need to compute the reduced sym
metry group of each of the three labelings in Figure 2, and 
for each to label the remaining nodes with one N and five 
C s using special case 1.2. 

Part C. Summary of Labeling Steps 

The Problem. Given a graph with n nodes, along with its 
symmetry group, find all nonequivalent ways of attaching 
to the nodes n given labels which are not necessarily dis
tinct. The symmetry group is usually expressed as a set of 
permutations relative to a reference numbering of the 
graph. 

The Solution. The steps are best described as three nest
ed, recursive procedures. The process begins with a call15 to 
procedure I; the results returned from this call constitute 
the desired set of labelings. The parallel between the fol
lowing algorithm and the preceding textual description is 
indicated by the numbers within square brackets. These 

Journal of the American Chemical Society / 96:25 / December 11, 1974 



7719 

refer to the section numbers in part B. 
Procedure I. Any Number of Label Types and Orbits. 

(A) If there are less than three label types, call procedure II di
rectly and return (from I) the results. 

(B) Otherwise, carry out label recursion [2.1] as follows. 
(1) Calling procedure II, label the nodes with labels of one 

type, using "blank" labels for the remaining types. 
(2) For each of these partial labelings, compute the reduced 

symmetry group and, calling procedure I recursively, 
label the "blank" nodes with the remaining labels. 

(3) Return (from I) the list of full labelings thus obtained. 
Procedure II. Two Label Types, Any Number of Orbits. 

(A) Test for special cases [1] as follows. 
(1) If there is only one label type [1.1] (trivial case), return 

the labeling directly. 
(2) If there is only one label of either type [1.2], compute the 

orbits and return (from II) the list of labelings which re
sult from assigning the single label to the first node in 
each orbit. 

(3) If the symmetry group consists of only the identity per
mutation [1.3], call the algorithm described in part B, 
section 1.3, and return (from II) the results. 

(B) Compute the orbits. 
(C) If there is only one orbit, call procedure III directly and re

turn (from II) the results. 
(D) Otherwise, carry out orbit recursion [2.2] as follows. 

(1) Choose the orbit which contains the node of lowest refer
ence number and partition the labels in all possible ways 
between the orbit and the remaining nodes. 

(2) For each partition, do the following: (a) call procedure II 
recursively to label the chosen orbit with the label set for 
this partition; (b) for each of these partial labelings, com
pute the reduced symmetry group and, calling procedure 
Il recursively, label the remaining nodes with the remain
ing labels for this partition. 

(3) Return (from II) the collected results of (2). 
Procedure III. Two Label Types and One Orbit. "Kernel Tech
nique" [2.31. 

(A) Attach a label of the first type to the first node of the orbit. 
(B) Extend the current labeling as follows. 

(1) If all nodes of the orbit have been labeled, then place the 
labeling on the output list and go to (4). 

(2) If any labels of the first type remain, then (a) place a 
label of the first type on the first unlabeled node of the 
orbit; (b) test this extended labeling Lk checking that, for 
each permutation x in the (possibly reduced) symmetry 
group of the graph, mm{Lk) is not larger than max-
(T(Lk)); (c) if the test is passed, call (B) recursively to 
further extend the labeling; (d) remove the label placed in 
(a), thus "contracting" the labeling to its previous state. 

(3) If any labels of the second type remain, exercise a proce
dure completely analogous to steps 2a-d, but using labels 
of the second, rather than first, type. 

(4) Return (from B). 
(C) Return (from III) the output list. 

Part D. Generalizations of the Method 

The labeling algorithm has been described in the context 
of labeling the nodes of a graph. However, the only infor
mation needed to carry out these steps is: (a) the number of 
each type of label; and (b) a group of permutations describ
ing the symmetry of the object relative to a reference num
bering of the parts. Thus, the procedures are applicable to 
any problem for which the above information is available. 
For example, the labeling of the decalin skeleton with three 
N's and seven C s is equivalent to finding all ways of black
ening three (and whitening seven) of the rectangular faces 
of 9 such that no symmetry duplicates are produced, assum
ing that 9 is free to undergo rotations and reflections in the 
plane. 

In our approach to the exhaustive generation of cyclic 
and acyclic isomers,2 there are two general types of prob
lems other than node labeling: the labeling of edges and of 
free valences. In each case, a simple modification of the 
basic algorithm allows for an efficient solution to the prob
lem. 

Edge Labeling. Under some circumstances, one might 
wish to label the edges of a graph rather than the nodes. In
stead of numbering the edges and obtaining the symmetry 
group independently, one can use the group on the nodes to 
simplify the situation. Let the representation for each edge 
be the unordered pair of numbers indicating the nodes at 
the end points of the edge. Then each permutation 7r,- in the 
symmetry group of the graph gives rise to a permutation 7r/ 
in the symmetry group on the edges, defined by 

Thus, for example, irv in Table III generates xv
e as follows 

77/(1,2) = 77v(l), 77T(2) = 5,4 = 4,5 
77/(2,3) = 77v(2), 77v(3) = 4,3 = 3,4 

and so on. Table VI shows the complete symmetry group on 
the edges of the decalin skeleton (2a is used as the reference 
numbering). 

Finding the set of possible epoxides derived from the de
calin skeleton is an example of an edge-labeling problem. 
Here, there are 11 labels: one bridging oxygen and ten 
"blanks." The labeling falls under special case 1 of the algo
rithm. Examination of Table VI shows that the edges fall 
into four orbits: 

(1,2 
(2,3 
(3,8) 
(5,6 

4,5 
3,4 

1,10) 

9,10 
8.9 

6,7) 
7,8) 

Assigning the single label to one edge in each orbit, one ob
tains the four solutions lOa-d. 

In a graph with one or more multiple edges, the same 
procedure can be used to obtain the symmetry group, but 
during the labeling, multiple edges need to receive more 
than one label. This problem shares some common features 
with free-valance labeling, and the general approach will be 
discussed at the end of the following section. 

Free-Valence Labeling. In the case of free-valance label
ing, each node in the graph has some number of equiva
lent16 free valences, which are the parts to be labeled. 
The labels consist of ligands. Rather than number the free 
valences and compute the symmetry group independently, 
one can use the group on the nodes (which may be a re
duced symmetry group if some of the original symmetry of 
the graph is destroyed by the distribution of free valences 
and/or by the presence of atom names on the nodes) togeth
er with a modified algorithm. 

One modification affects special case 1.3 (see part B), 
which is now inapplicable unless each free valence to be la
beled is attached to a different node. This is because even 
though a structure has no symmetry interrelating its atoms, 
there will still be valid permutations which interchange the 
free valences upon any node that carries two or more. 
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Table VI. Symmetry Group" of the Edges of the Decalin Skeleton6 

7 T I C 

TTv 0 

TTl,6 

TTlSO0 

1,2 
4,5 
9,10 
6,7 

2,3 
3.4 
8,9 
7.8 

3,8 
3,8 
3,8 
3,8 

3,4 
2,3 
7,8 
8,9 

4,5 
1,2 
6,7 
9,10 

5,6 
1,10 
5,6 
1,10 

6,7 
9,10 
4,5 
1,2 

7,8 
8,9 
3,4 
2,3 

8,9 
7,8 
2,3 
3,4 

9,10 
6,7 
1,2 
4.5 

1,10 
5,6 
1,10 
5,6 

" See Table III for the node permutations which generate these edge permutations.b The reference numbering here corresponds to 2a. 

A second modification affects orbit recursion. The orbits 
of the nodes are calculated, and one orbit is selected as be
fore, but one must then distribute the labels over the free 
valences (rather than nodes) within and not within the 
orbit. The m nodes in the chosen orbit have the same num
ber, say v, of free valences, and thus the orbit must be as
signed (w X v) labels. Suppose, for example, that one wish
es to label the 18 free valences in 11 with 4 OH's and 14 

H 

H's. If the chosen orbit is (1,5,6,10) (2a is the reference 
numbering), then m = 4 and v = 2. Thus, the orbit must 
receive eight labels and the remaining nodes, ten. The possi
ble distributions are shown in Table VII. 

The final modification influences the kernel technique, 
which is now carried out in two stages: a grouping stage 
and a labeling stage. In the grouping stage, the labels are 
partitioned, in all distinct ways, into m sets of v labels each 
\m and v being respectively the number of nodes in the 
orbit and the number of free valences on each node). Each 
set is called a multilabel of degree v and represents a set of 
ligands which may be attached to any node of the orbit. A 
familiar example would be the gem-dimethyl group, a mul
tilabel of degree 2. Because the multilabels of each partition 
are to be associated with nodes rather than free valences, 
standard node-labeling techniques may be used in the label
ing stage to find all unique associations. 

In the decalin example, consider case 1 of Table VIl. 

Table VII. Partitions of 4 OH's and 14 H's between the Free 
Valances of Orbit (1,5,6,10) and the Remaining Free Valences of l l a 

Case. no. 

1 
2 
3 
4 
5 

Labels going to orbit 
(1,5,6,10) 

No. of OH's No. 

4 
3 
2 
1 
0 

"" of H's 

4 
5 
6 
7 
8 

No 

Labels g 
remaining 
of OH's 

0 
1 
2 
3 
4 

oing 
no 

No. 

to 
i c 
of H's 

10 
9 
8 
7 
6 

° The reference numbering here corresponds to 2a. 

Here, there are four OH's and four H's to be attached to 
the eight free valences of the orbit (1,5,6,10) in 11. There 
are three ways to partition the eight labels into four multila
bels of degree 2. 

(OH1OH) (OH1OH) (H1H) (H1H) (partition 1) 
or (OH1OH) (OH1H) (OH1H) (H1H) (partition 2) 
or (OH1H) (OH1H) (OH1H) (OH1H) (partition 3) 

For each partition, the nodes of the orbit (1,5,6,10) must be 
labeled with the multilabel set. This is particularly simple 
for partition 3, because only one type of multilabel 
[(OH,H)] is present. Application of special case 1.1 (part 
b) yields only one solution (12). 

HO-
HO-

-OH 
-OH 

H 
12 

In partition 1, there are two multilabels of the type 
(OH,OH) and two of the type (H1H)1 and thus, the stan
dard kernel technique must be used. The situation here is 
precisely analogous to the labeling of the nodes in the orbit 
(1,5,6,10) with two N's and two C s , which was given as an 
example in part B, section 2.3 (see also Figure 2). Three Ia-
belings (13a-c) result from this application of the standard 
kernel technique to partition 1. 

H H 

HO 

H OH 

H H-
OH Hi 

HO OH HO H 
13a 13b 

H OH 

H-
H-

-OH 
-OH 

H OH 
13c 

Partition 2 is somewhat more complex. There is one label 
of the two types (OH1OH) and (H1H)1 and two of type 
(OH1H). Because there are three label types, label recur
sion (part B, section 2.1) is necessary. As the first step, the 
nodes may be labeled with one (OH1OH) and three 
"blanks," for which special case 1.2 is used. There is only 
one orbit, so one partial labeling (14) results. The "blanks" 

HO 

HO-

14 

of 14 must then be labeled with two multilabels (OH1H) 
and one multilabel (H1H), and again special case 1.2 is ap
plicable. Because 14 has no symmetry relating its nodes, 
each of 5, 6, and 10 constitutes a separate orbit, and thus 
three solutions (15a-c) are obtained. 

HO H HO H 

HO-
HO-

-H HO-
-OH HC 

-OH 
-H 

H H 
15a 

HO-
H-

HO 

H H 
15b 

-OH 
-OH 

H H 
15c 
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Using the modified kernel technique, then, one obtains 
seven solutions (12, 13a-c, and 15a-c) to the labeling of the 
chosen orbit in case 1 of Table VII. 

The modifications discussed here can be viewed in a con
text more general than that of free-valence labeling. In es
sence, the free-valence labeling is simply a node labeling in 
which each node receives not just one label, but as many la
bels as it has free valences. This kind of problem, in which 
some or all of the parts of a symmetric object receive fixed 
numbers of labels other than one, occurs in other contexts, 
most notably in the edge labeling of graphs with one or 
more multiple edges. The above modifications of the basic 
algorithm may be transferred directly to such problems if 
the term "node" is replaced by "part" and "number of free 
valences on a node" is read as "allowed number of labels on 
a part." In the edge labeling case, this allowed number cor
responds to the multipliciy of the edge. 

Part E. Applications of the Algorithm 

The labeling algorithm is a powerful tool in determining 
the scope and limits of many isomerism questions. It has 
been used,17 for example, to determine the complete set of 
Diels-Alder ring systems which can be formed using atoms 
from the set C6N6S4O4 (along with an appropriate number 
of hydrogens), and to verify, via construction, the fact that 
there are 13 isomers of the porphyrin ring system substitut
ed with four ethyl and four methyl groups. This latter case 
is an interesting one because the number of isomers is com
monly given as four'8 and has recently been "corrected" to 
eight.19 Although it has been noted20 that the correction is 
itself erroneous, the actual number (13) has apparently not 
been published.22 

In the following, an example is presented which would be 
difficult to solve without the help of a systematic procedure. 
The problem is as follows. Given the adamantane skeleton 
(16) with 16 free valences and given, as ligands, 1 hydroxyl 
group, 2 methyl groups, and 13 hydrogens, construct all to-
pologically distinct molecules. Note that because only to
pological isomers are to be considered, there is no distinc
tion between enantiomers, nor between structures which 
differ only in the orientation (i.e., "axial" VJ-. "equatorial") 
of ligands. To construct these geometrical isomers, one 
would first number, for reference, the 16 free valences of 
16, then express the 12 spatial rotations (including the iden
tity) which leave 16 unchanged as permutations relative to 
this numbering, and finally carry out the labeling using the 
techniques of part B, above. As stated, the problem is some
what simpler, exemplifying a free-valence labeling as dis
cussed in part D, above. Structure 17 shows the reference 
numbering21 to be used for the nodes, and Table VIII gives 
the topological symmetry group on the nodes relative to this 
numbering. 

Table VIII. The Symmetry Group for the Nodes of the Adamantane 
Skeleton (16)» 

17 

Because there are three label types (H, OH, and CH3), 
label recursion is necessary. First, the skeleton is labeled 
with 1 OH and 15 "blanks," an occurrence of special case 
1.2; the orbits are (1,2,3,4) and (5,6,7,8,9,10), and associat
ing the single label with the first node of each orbit, one ob
tains two partial labelings (18a-b). In the second step of 
label recursion, the "blank" free valences of 18a and 18b 

Reference 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 

2 
2 
3 
3 
4 
4 
1 
1 
3 
3 
4 
4 
1 
1 
2 
2 
4 
4 
1 
1 
2 
2 
3 
3 

3 
4 
2 
4 
2 
3 
3 
4 
1 
4 
1 
3 
2 
4 
1 
4 
1 
2 
2 
3 
1 
3 
1 
2 

4 
3 
4 
2 
3 
2 
4 
3 
4 
1 
3 
1 
4 
2 
4 
1 
2 
1 
3 
2 
3 
1 
2 
1 

Permutation 

5 
5 
6 
6 
7 
7 
5 
5 
8 
8 
9 
9 
6 
6 
8 
8 

10 
10 
7 
7 
9 
9 

10 
10 

6 
7 
5 
7 
5 
6 
8 
9 
5 
9 
5 
8 
8 

10 
6 

10 
6 
8 
9 

10 
7 

10 
7 
9 

7 
6 
7 
5 
6 
5 
9 
8 
9 
5 
8 
5 

10 
8 

10 
6 
8 
6 

10 
9 

10 
7 
9 
7 

8 
9 
8 
10 
9 

10 
6 
7 
6 

10 
7 

10 
5 
7 
5 
9 
7 
9 
5 
6 
5 
8 
6 
8 

9 
8 
10 
8 

10 
9 
7 
6 

10 
6 

10 
7 
7 
5 
9 
5 
9 
7 
6 
5 
8 
5 
8 
6 

10 
10 
9 
9 
8 
8 

10 
10 
7 
7 
6 
6 
9 
9 
7 
7 
5 
5 
8 
8 
6 
6 
5 
5 

" The reference numbering here corresponds to 17. 

M 
18a 18b 

are labeled with 2 CH3
1S and 13 H's under the appropriate 

reduced symmetries. The details are given below. 
Case 1. Labeling of 18a. Node 1 is distinguished by the 

fact that it carries an hydroxyl group, and thus any permu
tation in Table VIII which does not have " 1 " as its first 
entry is no longer valid. This leaves permutations 1 through 
6 (Table VIII) in the reduced symmetry group of 18a, and 
the new orbits are (2,3,4), (5,6,7), and (8,9,10). Here, as in 
the rest of this section, orbits are given only for those nodes 
which are still to receive labels. 

At this stage, there are more than two of each type of 
label and more than one orbit. None of the special cases 
apply, and thus orbit recursion is needed. If the orbit 
(2,3,4), which has three free valences, is chosen, there are 
three label distributions to be considered. 

Distribution 1. (a) The orbit (2,3,4) receives two CH3 's 
and one H. Special case 1.2 applies, and because there is 
only one orbit, one partial labeling (19) results. 

(b) The remaining free valences of 19 receive ten H's. 
Special case 1.1 applies, and one full labeling (20) is ob
tained. For clarity, hydrogens are omitted in 20 and in all 
other fully labeled structures in this example. 

Me Me 

^f OH 

19 20 

Distribution 2. (a) The orbit (2,3,4) is given one CH3 and 
two H's. Again, special case 1.2 applies, yielding the partial 
labeling 21. 
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(b) The remaining free valences of 21 receive one CH 3 

and nine H's. Special case 1.2 applies. The labeling in (a) 
reduces the symmetry group to permutations 1 and 2 in 
Table VIIl, and the new orbits are (5), (6,7), (8,9), and 
(10). Associating the single label with the first node in each, 
one obtains four full labelings (22-25). 

H 

Distribution 3. (a) The orbit (2,3,4) is labeled with three 
H's, for which special case 1.1 is used. The partial labeling 
26 results. 

(b) The remaining free valences of 26 are given two 
CH3

5S and eight H's. The labeling in (a) does not reduce the 
symmetry group, and permutations 1 through 6 are still 
valid. The new orbits are (5,6,7) and (8,9,10), and because 
no special cases apply, a second, quite similar level of orbit 
recursion is necessary. 

Distribution 1. (a) Two CH3's and four H's are placed on 
(5,6,7). A call to the modified kernel technique is needed, 
and two partial labelings (27a-b) result (see below). 

(b) The remaining free valences of 27a and b are given 
six H's, for which special case 1.1 is used. Two full labelings 
(28-29) result. 

29 

Distribution 2. (a) One CH3 and five H's go onto (5,6,7). 
Special case 1.2 gives one partial labeling (30). 

(b) The six free valences of 30 are labeled with one CH3 
and five H's using special case 1.2. Only permutations 1 

and 2 of Table VIII are valid for 30, and the new orbits are 
(8,9) and (10). Thus two full labelings (31-32) result. 

OH 
Me Me 

31 32 

Distribution 3. (a) Finally, (5,6,7) is given six H's 
through special case 1.1. 

(b) Two CH3's and four H's are attached to the six free 
valences in (8,9,10), which is still an orbit because the la
beling in (a) destroys no symmetry. The modified kernel 
technique gives (see below) two full labelings (33-34). 

Me 
OH 

Me 34 

33 

In the above, two references are made to the modified 
kernel technique. In each use, the orbit contains three nodes 
with two free valences apiece, the symmetry group includes 
all six permutations of these nodes, and the label set con
sists of two CH3's and four H's. There are three ways to 
partition these six labels into three multilabels of degree 2. 
For each partition, there are two multilabels of one type 
and one of the other, so special case 1.2 may be used to 
carry out the node labeling. There is one orbit, so each par
tition gives one result. Structures 27a and 33 are derived 
from partition 1, while 27b and 34 are obtained from parti
tion 2. 

(CH31CH;.) (H,H) (H1H) (partition l! 
(CH.;.H) (CH11H) (H,H) (partition 2) 

Case 2. Labeling of 18b. Here, node 5 bears an OH 
(along with an unfilled free valence which must eventually 
be labeled), and only permutations 1, 2, 7, and 8 are still 
valid. The new orbits are (1,2), (3,4), (5), (6,7,8,9), and 
(10). The steps in this labeling are analogous to those de
scribed in case 1, except that four levels of orbit recursion 
are needed rather than two. Figure 3 gives a schematic il
lustration of these steps, which together result in 19 full la
belings (structures 35 through 53 in Figure 3). There is one 
call to the modified kernel technique in which the orbit is 
(6,7,8,9), with each node bearing two free valences, the 
symmetry group contains permutations 1, 2, 7, and 8 of 
Table VIII, and the label set is composed of two CH3

-S and 
four H's. These eight labels may be grouped into four mul
tilabels as follows. 

(CH3,CH3) (H,H) (H,H) (H,H) (partition 1) 
(CH3,H) (CH3,H) (H,H) (H,H) (partition 2) 

Labeling the nodes of the orbit with the multilabels in parti
tion 1 may be accomplished using special case 1.2. For the 
second partition, the standard kernel technique is needed. 
The steps parallel exactly those given for the decalin exam
ple in part B, section 2.3 (see also Figure 2), with three re
sulting labelings. In Figure 3, structure 50 is derived from 
partition 1, while structures 51-53 are derived from parti
tion 2. 

In all, there are 30 unique labelings for this sample prob-
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OP9IT RECURSION 

•;i2M34;(5)(67S9;(1C) 

M^% 

Figure 3. Schematic illustration of the steps in labeling the free valen
ces of 18b with 2 methyl groups and 13 hydrogens. Each boldface 
arrow indicates a separate labeling step, with the pertinent label set 
written on the left and the orbit being labeled written on the right 
(RFV stands for "remaining free valences"). The abbreviations "SC 
1.1" and "SC 1.2" refer to special cases 1.1 and 1.2, respectively (see 
part B). New orbits, where they are needed, are written below the cor
responding partial labelings. For clarity, hydrogens are omitted in the 
fully labeled structures, which bear the structure numbers 35-53. 

lem: structures 20, 22-25, 28, 29, 31-34, and (in Figure 3) 
35-53. 
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